

Ф – Аннотация рабочей программы дисциплины

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

«Физика полупроводников»

по направлению 28.03.02 «Наноинженерия»

(бакалавриат)

1. Цели и задачи освоения дисциплины

Целью курса «Физика полупроводников» является изучение природы полупроводников, физических процессов, которые в них протекают при различных внешних воздействиях, современных методов их описания. Кроме того, курс «Физика полупроводников» позволяет сформировать у студентов представления о принципах работы полупроводниковых приборов, способах их изготовления и применении.

Задачи дисциплины:

- изучение основных представлений физики полупроводников;
- ознакомление студентов с физическими основами работы современных полупроводниковых устройств;
- развитие способностей и интереса к исследованию полупроводниковых материалов и приборов на их основе, к самостоятельному мышлению и творческой деятельности.

2. Место дисциплины в структуре ОПОП

Дисциплина «Физика полупроводников» входит в базовую часть дисциплин основной профессиональной образовательной программы (ОПОП) бакалавров по направлению 28.03.02 «Наноэлектроника», преподается в 7-м семестре 4-ого курса бакалаврам очной формы обучения после завершения общего курса.

Дисциплина «Физика полупроводников» базируется на курсах

- Механика
- Химия
- Экология
- Математический анализ
- Аналитическая геометрия и линейная алгебра
- Введение в специальность
- Информатика
- Молекулярная физика и термодинамика
- Ознакомительная практика
- Численные методы и математическое моделирование
- Электричество и магнетизм
- Дифференциальные и интегральные уравнения
- Электротехника и электроника
- Колебания и волны, оптика
- Теория вероятностей и математическая статистика
- Технологическая (проектно-технологическая) практика
- Нанометрология

Министерство образования и науки РФ Ульяновский государственный университет	Форма	
Ф – Аннотация рабочей программы дисциплины		THE THURSDAY.

- Материаловедение наноматериалов и наносистем
- Атомная и ядерная физика
- Сопротивление материалов
- Радиоэлектроника/ Испытания изделий
- Проектная деятельность
- Физико-химические основы нанотехнологий
- Полупроводниковая электроника
- Методы диагностики в нанотехнологиях
- Основы электро- и радиоизмерений
- Распространение электромагнитных волн в однородных, периодических и наноструктурах
- Научно-исследовательская работа (получение первичных навыков научно-исследовательской работы)

. Данная дисциплина имеет логические и содержательно-методические взаимосвязи с другими частями ОПОП, а именно с курсами

- Композиционные материалы. Металломатричные, с полимерной матрицей.
- Статистическая радиофизика и нанооптика
- Электродинамика СВЧ
- Технологические системы в нанотехнологиях/ Конструкции гибридных интегральных схем и микросборок
- Преддипломная практика
- Выполнение и защита выпускной квалификационной работы
- Подготовка к сдаче и сдача государственного экзамена

После изучения данной дисциплины студент должен понимать природу физических процессов, происходящих в полупроводниках, уметь выводить основные законы, описывающие свойства полупроводников, и применять свои знания на практике. Общая трудоемкость курса - 3 зачетных единицы.

Для освоения дисциплины студент должен иметь следующие входные знания, умения, навыки и компетенции, полученные в рамках изучения предшествующих дисциплин: базовые знания, умения, навыки в области общей и теоретической физики и радиофизики;

- ОПК-1 Способен решать задачи профессиональной деятельности на основе применения естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования
- ОПК-3 способен проводить измерения и наблюдения, обрабатывать и представлять экспериментальные данные
- ПК-2 Освоение конструктивных особенностей и режимов работы оборудования по производству наноматериалов и наноструктур
- ПК-4 Проведение испытаний наноматериалов и наноструктур на измерительном оборудовании с целью выявления функциональных свойств и контроля качества;

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Код и наименование	Перечень планируемых результатов обучения по
реализуемой	дисциплине (модулю), соотнесенных с индикаторами
компетенции	достижения компетенций

Министерство образ Ульяновский государс		Форма	
Ф – Аннотация рабочей	программы дисциплины		
ОПК-1 Способен решать задачи профессиональной деятельности на основе применения естественнонаучных и общеинженерных знаний, методов	полупроводников, проце полупроводниковых сис контактах полупроводни диэлектриками, примен	понятия, связанные о ессами переноса носител стемах, с основными яв ика с металлами, полупра вением этих явлений в ением этих явлений в	влениями на оводниками, приборных
математического анализа и моделирования;	приборных объектов, и предсказания поведо полупроводниковых об оперировать физическим величинами, анализиров	бъемных и контактных ми и технологическими твать задачи по переностовых системах различной мей об областях	законы для параметров приборов, серминами и у носителей
ОПК-3 - способен проводить измерения и наблюдения,		етоды измерения х	арактеристик
обрабатывать и представлять экспериментальные данные	уметь: измеря полупроводниковых мате Владеть: информацией	риалов и структур.	рактеристики правития основных
ПК – 2 Освоение конструктивных особенностей и режимов работы оборудования по производству наноматериалов и наноструктур	параметров полупроводни Знать: основные поняти носителей заряда в полуп явлениями на контакт полупроводниками, диэле в приборных устройствах Уметь: применять пол приборных объектов, технологическими термин	ия, связанные с процесса проводниковых системах, гах полупроводника с ектриками, применением	с основными металлами, этих явлений
ПК – 4 - Проведение испытаний	Владеть: информаци полупроводников в прибо Знать: основные мето материалов и структур	рных системах	применения
наноматериалов и наноструктур на измерительном оборудовании с целью	Уметь: проводить основ материалов и структур.		оводниковых
выявления функциональных свойств и контроля качества	Владеть: информаци полупроводников полупр		испытания и структур;

4. Общая трудоемкость дисциплины

Министерство образования и науки РФ Ульяновский государственный университет	Форма	
Ф – Аннотация рабочей программы дисциплины		THE TRANSPORT

Общая трудоемкость дисциплины составляет 3 зачетных единиц (108 часов).

5. Образовательные технологии

В ходе изучения дисциплины используются традиционные методы и формы обучения (лекции, в т.ч. с элементами проблемного изложения, семинарские и лабораторные занятия, самостоятельная работа).

При организации самостоятельной работы используются следующие образовательные технологии: самостоятельная работа, сопряженная с основными аудиторными занятиями (проработка учебного материала с использованием ресурсов учебно-методического и информационного обеспечения дисциплины); подготовка к тестированию; самостоятельная работа под контролем преподавателя в форме плановых консультаций, творческих контактов, внеаудиторная самостоятельная работа при выполнении студентом домашних заданий учебного и творческого характера, подготовке отчетов по лабораторным работам.

6. Контроль успеваемости

Программой дисциплины предусмотрены виды текущего контроля: устный опрос, тестирование, решение задач.

Промежуточная аттестация проводится в форме: зачет.